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A method for detecting faults in the navigation and control system of deep space satellites is presented. A new

method for computing the probability of a fault given multiple different types of residuals processors is presented.

The method uses the Shiryayev sequential probability ratio test to estimate the probability of the presence of a fault

signal given the residuals generated from either parity relationships or fault detection filters, a fault map of the

impact of each fault signal on the residuals, and an adaptive fault estimation scheme that enables processing with

fewer residuals. This newmethodology is applied to the detection of the fault signals in the attitude control systemand

navigation system of deep space satellites. First a sensor fusion process is presented for blending star tracker data,

gyro data, accelerometer data, and information from the vehicle control system to form the best estimate of the

navigation state. Then a set of fault detection filters are developed that detect and uniquely identify faults in each of

the sensors or actuators. Decision-making is handled through the sequential processing. Simulation results for a

single-satellite system are presented.

Nomenclature

AICG = acceleration of the vehicle at the center-of-gravity
point represented in the inertial frame

�a�� = cross-product matrix representation of the vector a
�bian = negative adaptive fault-signal estimate of the fault

signal �i
�biap = positive adaptive fault-signal estimate of the fault

signal �i
CBA = cosine rotation matrix to rotate a vector in the A

reference frame into the B Frame
�cian = negative adaptive bias threshold for the fault signal

�i
�ciap = positive adaptive bias threshold for the fault signal

�i
Fi = a posteriori probability associated with

hypothesized fault i
F� = discrete-time fault model direction for the fault

signal �
fi = probability density function associated with

hypothesized fault i
f� = fault model direction for scalar fault signal �
Hi = hypothesized fault i
IB = vehicle inertia
LCAB = fixed lever-arm distance from point A to point B in

the C reference frame
M = a priori covariance of the state x
m = vehicle mass
P = a posteriori covariance of the state x
PI = position in the inertial frame
p, q, r = angular velocity elements of !
QA
B �QB

C = quaternion rotation from C frame to A frame
QB
A = quaternion representation of a rotation from the A

reference frame to the B frame
t = time variable

u = command input
VI = velocity in the inertial frame
kxk = L2-norm of the vector x
_x = time derivative of the vector x
�x = a priori estimate of the parameter x
x̂ = a posteriori estimate of the parameter x
~x = measurement of the parameter x
�t = change in time variable between updates
�x = perturbation about the parameter x (truth minus

a priori estimate)
� = a priori variance of the test residual
� = unknown fault signal
�i = fault map of the effect of the fault signal i on the

residual
� = discrete-time state transition matrix
�i = a priori probability associated with hypothesized

fault i
!CAB = angular velocity of B frame relative to the A frame

represented in the C frame

I. Introduction

TO INCREASE the level of automation in deep space missions
and to reduce the cost of ground support, a method for auto-

matic fault detection of a deep space vehicle navigation and
actuation systems is described. The goal of the methodology is to
define a minimum instrumentation set required to maintain naviga-
tion function in the presence of an erroneous measurement signal in
any sensor subsystem or an uncommanded response from actuator
control system. This erroneous signal is defined as a deviation from
the truth beyond assumed statistical uncertainty in the measure-
ments or deviation from a command beyond the statistical uncer-
tainty in the actuation response. It is modeled as an unknown input
into the measurements and dynamical system and will be referred to
as the fault signal to be detected throughout this paper. As satellite
formation-flight concepts and development mature, such as
Terrestrial Planet Finder [1] (TPF) requiring distributed automatic
control of satellites [2], the need to ensure that each individual
spacecraft is healthy increases, because the level of complexity
increases with each satellite added.

Systems for attitude control system (ACS) estimation have been
well studied in the literature. ExtendedKalmanfiltermethods such as
those employed by Scharf et al. [3] have been applied to the TPF
experiment, which is the approach taken in this paper. Methods for
fault detection in Earth-orbiting satellite navigation systems have
been studied, for example, by Chen et al. [4], although the dynamics
numerically estimated in that work are now explicitly defined
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through kinematics, and the filter structure presented here differs
significantly. A reduced-order filter structure for detecting star
trackers and gyros is developed here that only relies on the star
tracker and gyro measurements. A new parity relationship is devel-
oped for detecting thruster and momentum wheel faults that expli-
citly identifies which thruster failed based on parity filters.

Model-based fault detection has been employed in previous flight-
test experiments, such as by Lee and Brown [5] for the Cassini
satellite. Lee and Brown used the output of the thruster control
system combined with an estimate of the angular rate from the
attitude control system to generate a parity relationship in angular
acceleration. The error was integrated over time and comparedwith a
threshold. The method here performs a similar function, but requires
additional accelerometers and gyro measurements to expressly
identify thruster faults and leaks. The method is able to identify any
fault signals in the thrusters, momentum wheels, or additional
accelerometers introduced. The advantage is that the accelerometer
method is able to detect smaller thruster faults in a shorter time,
which is important for ensuring mission longevity and for avoiding
collisions between multiple vehicles operating as part of a TPF-like
mission.

The fault-tolerant navigation system devised has several compo-
nents. A sensor fusion process is implemented using an extended
Kalman filter (EKF) to process the actuator commands as well as the
instruments to form a state estimate of the position, velocity, and
attitude of the vehicle. A bank of residual processors consisting of
fault detection filters [6] or parity relationships is used to process the
measurements and actuator commands to generate test residuals. The
residuals are tested in the multiple-hypothesis Shiryayev sequential
probability ratio test [7] (MHSSPRT), a hypothesis-testing scheme
used for detecting statistical changes in the residuals in a minimum
time, signifying a transition from healthy to unhealthy. The output of
theMHSSPRT is the probability of the existence of a fault signal that
is used to declare and identify a fault. The goal of the fault detection
filter is to generate a residual that forces the fault signal into a
particular residual subspace. The MHSSPRT is then used to test that
portion of the subspace to identify the source of the particular fault
signal. Where appropriate, parity relationships, which do not require
memory in the form of state estimation or covariance updates, can
provide a simple means of generating residuals that form faults in
particular directions. The advantage of this method is that a single
MHSSPRT may examine all of the residual processes and make
decisions based on statistical performance testing.

Two enhancements to the MHSSPRT are addressed. First, a
method for mapping the multiple fault modes and the response of all
of the fault detectionmethods is presented that allows theMHSSPRT
to correctly identify the fault mode that may appear in multiple fault
detector residual outputs. The result is a fault map showing the effect
of each fault signal type on the entire residual space. Second, an
adaptive bias scheme is implemented that improves false alarm
rejection and fault detection performance. In the healthy case, in
which no fault signal exists, all of the residual processors tend to
produce a zero-mean residual that can generate ambiguous results in
the MHSSPRT due to numerical uncertainty. The adaptive bias
estimation scheme uses the fault map to adaptively estimate the fault
signal associatedwith a particular hypothesized fault type. By setting
minimum bias limits based on the assumed statistics of the residuals,
the adaptive scheme enables rejection of a hypothesized fault when
the system is healthy and drives the MHSSPRT to the correct
hypothesis when a fault signal appears. Note that neither enhance-
ment requires knowledge of the fault signal, although fault signal
sign (positive or negative) is hypothesized for some faults.

The primary instruments considered for this experiment are the use
of accelerometers, angular rate gyros, and star trackers. The star
trackers provide estimates of the vehicle attitude for the star field. A
set of gyros provide angular rate measurements andmultiple acceler-
ometer triads are used tomeasure both vehicle linear acceleration and
vehicle angular acceleration. A sensor fusion process is developed
for estimating the vehicle attitude state using the available measure-
ments as well as the vehicle actuator commands. Two types of
actuation are considered: thrusters andmomentumwheels. Thrusters

are assumed to be distributed around the perimeter of the vehicle to
generate both a linear acceleration and a rotational moment. The
momentumwheels provide a pure angular acceleration used to orient
the vehicle. The filter methods presented include position measure-
ments. The NASA Deep Space Network (DSN) could provide
position updates at low rate to improve estimation and also aid in fault
detection. If the satellite is in low Earth orbit (LEO), in which a
position measurement such as the Global Positioning System (GPS)
may be available. No faults in the positioning measurements are
considered, because position fault detection must be performed on
Earth in the case of the DSN or because GPS receiver autonomous
integrity monitoring techniques are well developed and understood,
an example of which is given by Chan and Speyer [8].

Through the design process, the trade space for redundancy is
created and the designer may select the number of instruments and
instrument types required to ensure navigation system function in the
presence of a fault as well as to provide the ability to detect faults in
actuators automatically. Simulation results for a preferred minimum
configuration are demonstrated at the end of this paper.

II. Fault Detection and Identification Theory

The fault-tolerant navigation system presented in this paper
consists of three basicfilter types combinedwith a residual processor.
Figure 1 shows the generalized block diagram. The inputs to the
system are measurements and actuator commands. The goal of the
fault-tolerant navigation system is to detect and isolate the fault sig-
nal in any of these inputs. Themeasurements and actuator commands
are processed through a set of filters, including the standard state
estimator filter, a bank of fault detection filters, and a bank of parity
relationships. The residuals from each of these filters are passed to a
residual processor consisting of a hypothesis-testing scheme. A
separate hypothesis is proposed for each fault signal assumed. The
residual processor provides an estimate of the probability of the fault
signal. The navigation state estimation for this process consists of an
EKF, which will provide a residual associated with the hypothesis
that the system is healthy and no fault signal is present.

A. Residual Generation Using Fault Detection Filters

To detect fault signals in the inputs, test residuals are created that
combine the different inputs. The residuals are derived from one of
three types of filters: an EKF defining the healthy hypothesis, a fault
detection filter (FDF), or a parity relationship. The particular type of
fault detection filter used for this paper is based on the disturbance
attenuation problem developed by Chung and Speyer [6] and then
discretized byMutuel and Speyer [9]. Thefilter structure is derived as
a minimization problem with the cost function defined in Eq. (1)
subject to the dynamic constraint in Eq. (2) and the measurement
function in Eq. (3). The dynamics of Eq. (2) define how the state x
propagates forward in time as a function of the input control u and
process noisew and how fault signals�T and�N affect the state. The
signal �T is referred to as the target fault and �N is referred to as the
nuisance fault. The effect of the target fault on the state is to be
amplified, whereas the effect of the nuisance fault is to be attenuated.
The strategy is to build filters that are immune to certain nuisance

Unknown fault
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and control input.
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Fig. 1 Fault detection general block diagram.
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faults and susceptible to target faults so that the residual process will
transmit the target faults and show no effect when a nuisance fault
occurs. No assumption ismade about either signal�T or�N. Only the
fault signal directions FT and FN are assumed known:

min
�T

max
�N

max
x�t0�

1

2

Z
t

t0

�k�Tk2Q�1T � k�Nk
2
Q�1N
� ky � Cxk2

V�1
�dt

� 1

2
kx�t0� � x̂0k2P (1)

_x� Ax	 Buu	 FT�T 	 FN�N 	 Bww (2)

~y� Cx	 v (3)

The measurement function in Eq. (3) shows how the measurement y
is derived from the state with additive noise v. Measurement faults
may be converted to actuator faults, as discussed by Chung and
Speyer [6]. In this case, the unknown fault signal � enters the
measurement in the direction of E, as shown in Eq. (4). A new fault
direction f� is chosen to satisfy Eq. (5). Note that the choice f� may
not be unique in Sec. IX, Simulation Results, of this paper. With the
selection of f�, the actuator fault direction F� is defined in Eq. (6)
and consists of two directions, as discussed by Chung and Speyer:

y� Cx	 v	 E� (4)

E� � Cf� (5)

F� � �Af� f� � (6)

Questions about output separability, or the ability to detect and
isolate different fault signals using a common set of measurements
and dynamics as uniquewithin the filter structure, has been shown to
consist of a rank test of the observability of all of the fault models
through the measurements, as shown by Chung and Speyer [6].

Given the cost function presented and the modeling of the fault
input, Mutuel and Speyer [9] present the discrete-time version of the
filter structure, as shown in Eqs. (7) and (8), where �x is the a priori
state estimate with associated covariance P and x̂ is the a posteriori
estimate with associated covariance M. The measurement noise v
and the process noisew are assumed to be Gaussian with covariance
V andW, respectively. The state transitionmatrix is defined such that
��t	�t; t� � eA�t. The filter structure is very similar to a Kalman
filter in structure, but is significantly different due to the introduction
of the nuisance and target fault directions with associated weighting
functions QN and QT :

x̂�t� � �x�t� 	 PHTV�1� ~y � C �x�t��
�x�t	�t� ���t	�t; t�x̂�t�

(7)

M � P � PC�CPCT 	 V��1CTP
P��M�T 	W 	 FNQNF

T
N � FTQTF

T
T

(8)

The residual process that will be tested in theMHSSPRT is defined in
Eq. (9) using a projector to annihilate the effect of the nuisance fault
on the residual. The annihilator is defined in Eq. (10), with n being
the smallest integer greater than or equal to zero that ensures that the
fault transmission matrix C�nFN has full column rank. Note that if
the novalue ofn creates full rank, then the fault is not observablewith
the set of measurements:

~r�HN� ~y � C �x� (9)

HN � I � �C�nFN���C�nFN�T�C�nFN���1�C�nFN�T (10)

The use of the projector on the residual in Eq. (9) annihilates the
direction in which the fault signal enters into the residual. If the fault
signal exists, this residual will remain zero mean. Without the
projector, the residual would show the effect of the fault signal
transmitted through C�nFN . Of course, the target faults that are not
annihilated by HN are still visible in the residual, as described by
C�nFT , where n is the appropriate integer greater than or equal to
zero such that C�nFT has full rank, if it exists. If no nuisance faults
are modeled, then no annihilator is necessary in this scheme.

B. Residual Generation with Parity Relationships

Some fault signals are visible in measurements without the use of
dynamics. For instance, the output of two instruments of the same
type may be compared directly without the need for a dynamic
process such as the ability to detect an uncommanded action in
thrusters using accelerometer measurements, as will be described. In
such cases, simplified parity relationships can be used to generate
residuals. Given two measurements ~y1 and ~y2, either or both
susceptible to a scalar fault signal � through unique fault directions
E1 and E2 of the form in Eqs. (11) and (12), then a residual ~rmay be
formed as shown in Eq. (13) with associated projectorHE defined in
Eq. (14) designed to remove the effect of the fault signal � from
residual ~r. It is assumed that the parity relationship has covariance
associated with the zero-mean Gaussian noise variables v1 and v2, as
shown in Eq. (15) for the case when no fault occurs:

~y 1 � y	 E1�	 v (11)

~y 2 � y	 E2�	 v (12)

~r�HE� ~y1 � ~y2� �HE��E1 � E2��	 v1 � v2�
�HE�v1 � v2� 
 0 (13)

HE � I � �E1 � E2���E1 � E2�T�E1 � E2���1�E1 � E2�T (14)

E�� ~y1 � ~y2�� ~y1 � ~y2�T � � V1 	 V2: �� 0 (15)

Using themethods defined, a single residual ~rmay be developed that
combines the residuals generated from each EKF, fault detection
filter, and parity relationship into a single residual at each time. The
combined covariance � is derived from the stochastic relationships
of the filter and parity estimates and represents the assumed uncer-
tainty in the residual process. A fault signal is an input that causes the
residual output to change significantly relative to the assumed zero-
mean white-noise process with covariance �.

C. Residual Processing Using the MHSSPRT

The residual processor used is the MHSSPRT [7]. This scheme
tests the incoming residual process against a set of hypothesized
probability density functions and then calculates the probability that
one hypothesis is correct relative to other hypotheses. The scheme
assumes independent identically distributed probability density
functions. As will be seen, the method presented here differs in two
ways from the method presented by Malladi and Speyer [10]. First,
the probability update is restricted to assume that only a single fault
signal occurs at a time at the exclusion of all of the other modeled
faults. This minor philosophy difference results in an additive
probability propagation stage rather than multiplicative. Second, an
adaptive bias estimation scheme is developed that enables a single
MHSSPRT to process residuals from multiple residual generators
rather than implementing ad hoc decision trees based on the output of
several differentMHSSPRT solutions. AlthoughMalladi and Speyer
developed adaptive schemes, the adaptation operated on the
estimation structure of an EKF. The adaptive method presented here
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operates in cascade from the estimator or residual generators on all
residuals processed in the MHSSPRT. The adaptation is not used to
provide feedback within the residual generation process.

Given a set of l hypotheses including the healthy hypothesis H0,
the initial probability that each hypothesis is correct is defined by
�i�t0�, where the index i is the index of the hypotheses. At each time
step, the measurements at that time step are used to generate a
residual conditioned on each hypothesis ~ri�t�. All hypotheses
operate on the same measurement history, but each may only test a
portion of the residual. Each hypothesis assumes that the residual
conforms to a probability density function fi� ~ri�t��.

The MHSSPRT update equation calculates the updated proba-
bility that a particular hypothesis is correct based on the residual
history using the method defined in Eq. (16):

Fi�t� �
�i�t�fi� ~ri�P
l
j�0 �j�t�fj� ~ri�

(16)

If the updated healthy probability F0�t� drops below a certain
threshold PF, then a fault is declared, but the filter continues to
operate. If the probability of a particular hypothesis Fi�t� exceeds a
certain threshold PI , then the fault signal source is identified.
Processing stops and reconfiguration logic must be invoked to deal
with the particular fault mode. Until that point occurs, the processing
continues. The probabilities are propagated forward in time using the
propagation formulation:

�i�t	�t� � Fi�t� 	 p
�
1 �

Xl
j�1

Fj�t�
�
: j ≠ i (17)

�0�t	�t� � 1 �
Xl
j�1

�i�t	�t� (18)

The propagation updated the probability of a hypothesized fault from
time t to time t	�t by assuming afixed probability of fault between
measurements of p. The probability that no fault has occurred �0 is
updated according to Eq. (18). The update in Eqs. (17) and (18)
differs from that of Malladi and Speyer [10], which assumed that the
transitionmay occur from the healthy state to a combination of any of
the hypotheses. The difference is in the fundamental assumption of
how a fault may act within the system. Malladi and Speyer assumed
that simultaneous fault signals may exist, and Eq. (17) assumes that
only one fault may occur at a time at the exclusion of other faults.

D. Generalized Fault Maps

Given these different types of residual processors, a fault detection
strategy may be formulated in which residuals are generated that are
susceptible to certain faults and are immune to other faults. A
mapping is required to relate the susceptibility of each residual type
to a particular fault.

A simple fault mapmay be defined that shows how each residual is
susceptible to a particular fault. This fault map consists of a matrix �
consisting of column vectors �i that define the direction that fault �i
acts on all residual processes. Residuals designed to block a
particular nuisance fault will have zeros in the appropriate rows, and
residuals that are susceptible to these faults will not. Given l residuals
as shown in Eq. (19), each designed to reject the fault modelFj, then
themapping �i forFi can be calculated as shown inEq. (20), inwhich
where is noted thatHiC�

niiFi � 0 by design ifFi is a nuisance fault.
At least one residual should actually be designed as a target fault so
that the fault signal is clearly visible in at least one residual, unless the
goal is simple elimination and the designer is willing to forego
detection and isolation. Each of the integers nji is chosen as the
minimum integer value greater than or equal to zero such that
HjC�

njiFi ≠ 0. Note that it is perfectly acceptable to have
HjC�

njiFi � 0 showing that a particular residual rj is not suscep-
tible to a particular Fi, if that is the case. In that instance, �ji � 0 by
definition:

~r� � ~r1 ~r2 � � � ~ri � � � ~rq �; E� ~r ~rT � �� (19)

�i � � ��1i�T ��2i�T � � � ��ii�T � � � ��li�T �T (20)

�ji �HjC�
njiFi; �ii � C�niiFi (21)

An entire fault map � may be constructed for all l faults such that
�� � �1 �2 � � � �i � � � �l �. Note that � contains not just
direction information, but also relative magnitude.

E. Adaptive Bias Estimation in the MHSSPRT

If no fault exists, the residual generators as presented are all
designed to produce residuals that have a zero mean with covariance
�. If a zero-mean Gaussian is selected as the density function for all
of the residuals, then all tests are consistent with the hypothesized
density function and the MHSSPRT cannot distinguish between
hypotheses. Because an annihilator sets a portion of the residual to
zero, the MHSSPRT is more likely to select the projected residual as
most nearly matching a Gaussian distribution than a white-noise
nonzero residual process generated by the best state estimator.

To counteract this problem, an adaptive bias estimation scheme is

proposed. This scheme estimates a bias �bi in the residual process
associated with the direction �i. A separate bias is estimated for each
fault �i, and the bias is only estimated on those elements of the
residual having nonzero value for �i. A minimum bias value �ci is
defined for �bi, which forces a bias into the residuals hypothesizing a
fault signal. The bias �bi is estimated and removed from the residual
before testing in the MHSSPRT. If no fault signal exists, the
unhealthy hypotheses are appropriately weighted relative to their
density functions and the healthy hypothesismost closelymatches its
density function. If a fault signal exists, the bias tracks the effect of
the fault signal on the residuals removing its effect. The density
function hypothesizing that fault signal most closely matches a zero-
meanGaussian. Because the bias is removed from the residual before
use in the density function, both a positive and negative bias must be
used, which is equivalent to hypothesizing two different fault signals
for each unknown fault input �i: one positive and one negative.
Although this approach does effectively bias the unhealthy
hypotheses, the cost is that both a positive and negative bias must be
estimated, effectively doubling the number of hypotheses.

The residual density functions are assumed to be Gaussian, as
shown in Eq. (22), although other density functionsmay be assumed.
In this case, N is the size of the residual vector ~r, � is the assumed

covariance of the residual, and �bi is a bias to be adaptively estimated
as part of this process:

fi� ~r� �
1

2�N=2j�j
e
�1
2 � ~r�bi�T��1�~r�bi� (22)

Aminimumbias �cip is defined as shown in Eq. (23), where
����
�c
p

is the
Cholesky decomposition of the covariance. The bias �cin is the
negative of the positive bias �cip. Because no assumptions were made
on the fault signal�i, the adaptive scheme takes into account the fact
that the signal may be positive or negative. A positive �i results in
changes in the residual associated with the fault map �i, whereas a
negative �i results in changes in the residual associated with the
negative of the fault map ��i:

�c ip � �i
����
�

c
p

; �cin �� �cip (23)

The bias �biap is estimated adaptively using a low-passfilter such as an
averaging filter depicted in Eq. (24). In this case, k is the number of
steps over which to average, �ia is the ath element of �i, and ~ra�t� is
the ath element of the residual ~r at time t. Likewise, a negative bias
�bnap is calculated as in Eq. (25). Each bias is estimated over time:

�b iap�t� �
�k � 1�
k

�biap�t ��t� 	 �ia
1

k
~ra�t� (24)

�b ian�t� �
�k � 1�
k

�bian�t ��t� 	 �ia
1

k
~ra�t� (25)

WILLIAMSON ETAL. 1573



�b iap �max� �biap; �ciap� (26)

�b ian �min� �bian; �cian� (27)

At each time step and on an element-by-element basis, if the bias �biap
drops below the minimum value set by �ciap, then the value is reset to
the minimum value of �ciap. Similarly, if the value of the negative bias
�bian increases above thevalue set by �cian, then the bias value is reset to
theminimum value of �cian. The value of �ciap and �cian effectively set a
“dead band” in which faults that do not change the residual above the
values associated with �ciap do not register as faults in the system,
which is why the biases �ciap and �cian are chosen with respect to the
assumed covariance. The designer may choose to set minimum fault
threshold �ciap as a one-sigma value N-sigma value by appropriately
weighting Eq. (23).

Each hypothesized residual ~ri is appropriately biased during the
healthy condition. If a positive fault signal�i enters the system, then

the �biap terms adaptively remove the effect of the fault signal on the
residual process, ensuring that the residual ~ri remains zero mean,
whereas other residuals without the precise adaptation suited to fault
�i are nonzeromean. If a negative fault�i enters the system, then the
�bian elements will adaptively estimate and remove the fault from the
system. This bifurcation between positive and negative fault signals
is introduced into the MHSSPRTas additional hypotheses. Two sets
of hypotheses for each fault �i are assumed at this point: one for a
positive fault and the other for a negative fault signal. If l faults are
defined, then theMHSSPRT has 2l	 1 hypotheses, l positive faults,
l negative faults, and the healthy hypothesis. The residual process for
the ith positive hypothesis is defined in Eq. (28) and the residual
process for the ith negative hypothesis is defined in Eq. (29):

~r ip � ~r � �bip (28)

~r in � ~r � �bin (29)

Two explicit hypotheses are generated for each fault signal (one
positive and one negative); each pair is actually only a single fault. It
is suggested that the resulting pair of probabilities for the positive and
negative fault signals are summed after updating the MHSSPRT to
properly identify a single failure, although this is not necessary.

The method presented here is different from that previously
derived by Malladi and Speyer [10], in which the adaptive scheme
was applied to the Kalman filter. In this scheme, the adaptive bias
estimate is instead applied only to the residual processes. The bias
estimation scheme presented here does not interfere with any of the
filter processes. The advantage of this technique is that a single
MHSSPRTmay be used to estimate the probability of a fault in anyof
the l hypothesized faults without discrete decision-making processes
external to the MHSSPRT. The next sections apply this scheme and
the methods suggested to a single-satellite estimation problem.

III. Single-Satellite Vehicle Model and Dynamics

The vehicle model used for this experiment is reasonably generic,
but similar to designs for the Jet Propulsion Laboratory TPF
experiment [1,3]. The experiment, in the planning stages, is currently
set to operate at theL2 libration point. The assumed location at theL2

libration point enables the use of simplified dynamics. No gravity
terms are currently used. The state of a satellite is described in
Eq. (30). The position is described by the vectorPI, the velocity with
respect to inertial is represented by VI, the quaternion rotation from
the body frame to the inertial is represented by QB

I , and the angular
velocity from the inertial to the body frame in the body frame is
represented by !BIB:

x�
PI

VI

QB
I

!BIB

2
664

3
775 (30)

The state is propagated in time using nonlinear equations of motion.
The dynamics of the position and velocity are described in Eqs. (31)
and (32):

_P I � VI (31)

_V I � 1

m
CIB
XN
i�1

BTtiu
B
Ti (32)

The term BTti represents the sensitivity of the acceleration dynamics
to the input from the ith thruster command uBTi. Thruster commands
are specified in units of newtons. The mass of the vehicle is defined
by the variable m. The cosine rotation matrix CIB is calculated from
the quaternionQI

B and rotates the thruster commands into the inertial
frame. All of the thruster inputs are summed to form the acceleration.
The rotational dynamics are defined in Eqs. (33–35) using the
methods defined by Zipfel [11] for relating input moments to angular
velocity:

_QB
I �

1

2

0 �p �q �r
p 0 r �q
q �r 0 p
r q �p 0

2
664

3
775QB

I (33)

!BIB �
p
q
r

2
4

3
5 (34)

_! B
IB � I�1B ��!BIB��IB!BIB� 	 I�1B

�XN
i�1

BTriu
B
Ti 	

XS
j�1

BMju
B
Mj

�

(35)

The inertia of the vehicle in the vehicle body frame is defined as IB
and the command inputs drive the dynamics resulting from the N
thruster commands uBTi and the Smomentum wheel commands uBMj.
In Eq. (33), p, q, and r are the roll, pitch, and yaw rates, respectively.
Equations (31–35) are integrated using a nonlinear integration
routine to translate specified thruster and momentum wheel com-
mands into angular velocity, attitude, velocity, and position states.
These states are referred to as the “truth” for the simulation and used
to generate measurement errors.

The vehicle configuration used in the simulations has 16 thrusters
and 3momentumwheels. Each thruster fires in the direction of a unit
vector di. A lever arm Lth

i defines the location of the thruster relative
to the center of mass. Thrusters cause both linear and rotational
motion. The sensitivity matrix BTt representing the linear portion of
the thruster input is defined in Eq. (36):

BTt � �BTt1 BTt2 � � � BTt16 � � � d1 d2 � � � d16 � (36)

The sensitivity matrix for the rotational portion of the thruster input
BMt is defined in Eq. (37):

BTr � �BTr1 BTr2 � � � BTr16 �
� � d1 � Lth1 d2 � Lth2 � � � d16 � Lth16 � (37)

Momentumwheels provide puremoment inputs. Assuming that each
momentum wheel provides input along a principle axis of the body,
then the sensitivity matrix BM for the rotational input of the three
momentum wheels is defined in Eq. (38):

BM � �BM1 BM2 BM3 � �
1 0 0

0 1 0

0 0 1

2
4

3
5 (38)

Figure 2 shows a diagram of the thruster arrangement, and Table 1
provides the vehicle mass and moment of inertia values for a single
TPF vehicle used in the simulation.
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Note that the dynamics provided are only applicable to the
simplified low-gravity case at the libation point. These dynamics
may be adapted for an orbital parameter set, if required.

IV. Measurement Models

Four types of measurements are examined in this study. The star
trackers estimate the attitude of the vehicle. Angular rate gyros and
accelerometers measure inertial quantities. The DSN provides a
simplified position measurement that is available periodically.
Alternatively, this method could be applied toward low-Earth-orbit
satellites using a GPS input in which a GPS receiver provides a
position solution to the navigation system. Error models for the
thrusters and momentum wheel estimates are also described.

The measurement error model used for the rate gyros is nonlinear
and is given byEq. (39), where themeasured angular velocity ~!BIB is a
function of the true inertial angular velocity !BIB, but rotated by the

error in the assumed vehicle attitude relative to the inertial frame C �B
B

with additive sensor noise:

~! B
IB � C

�B
B!

B
IB 	 �! (39)

The error in the true rotation from the inertial to the body frameCIB is
defined using a nonlinear rotation of the a priori rotation matrix CI�B
and the error in the rotation C �B

B, which is linearized in terms of the
error in the quaternion �q, as shown in Eq. (40):

CIB � CI�BC
�B
B 
 CI�B�I 	 2��q��� (40)

In this case, the error in the attitude �q is a 3 � 1 vector of the
linearized error in the quaternion. When �q is estimated in the filter

structure, then the full error quaternion Q �B
B can be reconstructed

using the following step:

Q
�B
B �

1��������������������������
1:0	 �qT�q

p 1

�q

� �
(41)

The star tracker measures the attitude of the vehicle body relative to
the inertial, which is a function of the true attitude corrupted by a
rotation error. The measurement equation for the star tracker is in
Eq. (42):

~C B
I � CB�BC

�B
I 	 CB�BC

�B
I ��q�� (42)

Substituting Eq. (40) into this, the star tracker measurement equation
yields

~C B
I � �I � 2��q���C �B

I 	 �I � 2��q���C �B
I ��q�� (43)

Let

~C B
I C

I
�B
� C ~B

�B
� I � ����� (44)

Distributing terms, neglecting higher-order terms, and using the
identity in Eq. (44), we can derive the attitude error equation:

����� � 2��q�� 	 C �B
I ��q��CI�B (45)

A simplified accelerometer measurement is used in which the
acceleration measurement is simply the truth corrupted by additive
noise �a:

~a� �a	 �a (46)

Similarly, for the DSN, the measured position taken to be the true
position plus the position error plus noise �P, as shown in Eq. (47).
This position measurement is overly simplified, but applicable to
both the DSN and to GPS in LEO types of orbits:

~P� P	 �P (47)

The estimate of the thruster output �uBTi is assumed to be equal to the
true output uBTi corrupted by noise of the following form:

�u BTi � uBTi 	wTi (48)

Likewise, momentum wheel command estimates �uBMj are defined as
the sum of the true momentum wheel command uBMi with additive
noise:

�u BMj � uBMj 	 wMj (49)

The noise terms representing the uncertainty in thrust and moment
outputwTi andwMj are assumed to be Gaussian with zero mean and
are independent of all other instruments or controls. These noise
terms represent uncertainty in the manufacture and output of the
actual hardware device. If the control system commands a particular
thrust, the noise term represents the difference between the com-
manded and actual thrust, the difference being caused by manufac-
turing defects or limits of precision.

V. Extended Kalman Filter for Navigation

An extended Kalman filter is generated by linearizing the
dynamics presented in Sec. III around a nominal state estimate and
estimating the error in the state based on the measurement models
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Fig. 2 Vehicle thruster configuration.

Table 1 TPF mass properties

Property Value Units

Mass 879 kg
Ixx 2787 kg �m2

Iyy 2836 kg �m2

Izz 2266 kg �m2
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presented in Sec. IV. The filter structure forms the basis for the fault
detection filter structures presented later in this paper.

A nominal state estimate �x with associated error covariance M is
defined in Eq. (50) based on the true state in Eq. (30):

x�

�PI

�VI

�QB
I

�!BIB

2
664

3
775 (50)

The nominal state �x is the a priori estimate used for the filter. The
error in the a priori estimate is defined using linear perturbations for
position, velocity, and angular velocity, but with nonlinear
perturbations for attitude. The position perturbation �P and velocity
perturbation �V are defined in Eqs. (51) and (52):

PI � �PI 	 �P (51)

VI � �VI 	 �V (52)

The attitude rotation perturbation is defined by first calculating the

cosine rotation matrix �CBI derived from the a priori attitude �QB
I . The

quaternion error perturbation �q is a 3 � 1 vector and was first
described in Eq. (40) and defined as the first-order perturbation of the

rotation matrix C �B
B, the matrix that describes the rotation from the

estimated body frame to the true body frame. The true angular
velocity is defined as a linear sum of the a priori with the perturbed
angular velocity error:

!BIB � �!BIB 	 �! (53)

Using the definitions presented and the dynamics presented for the
satellite, it is possible to form the dynamics describing the
propagation and growth of the error as a function of the thrust and
momentum wheel inputs, as shown in Eq. (54). The perturbed state
�x is defined in Eq. (55), with the dynamics matrixA defined without
proof in Eq. (56). The control sensitivity matrix B is defined in
Eq. (57) for the control vector u defined in Eq. (58). The noise matrix
for this problem is equal to the sensitivity matrix (B� �). The
stochastic, zero-mean, Gaussian noise variable w is defined in terms
of the thruster and momentum wheel noise in Eq. (59):

� _x� A�x	 Bu	 �w (54)

�x�

�P
�V
�q
�!

2
664

3
775 (55)

A�

0 I 0 0

0 0 �2 1
m
CI�B

��P
N
i�1 BTtiu

B
Ti

�
�
�

0

0 0 �� �!BIB�� 1
2
I

0 0 0 I�1B �� �!BIB��IB �!BIB�

2
6664

3
7775

(56)

B�

0 0
1
m
CI�BBTti 0

0 0

I�1B BTri I�1B BMj

2
664

3
775 (57)

u� �uBTi
�uBMj

� �
(58)

w� wTi
wMj

� �
(59)

This filter processes all of the measurements available including
position, attitude from both star trackers, and angular velocity. The
residual is defined in Eq. (60):

~r�

~P � �P

��1

��2

~! � �!

2
666664

3
777775�

I3 03 03 03

03 03 2I3 03

03 03 2I3 03

03 03 03 I3

2
66664

3
77775

�PO

�VO

�q

�!BIB

2
66664

3
77775

	

vp

CBS1vS1C
S1
B

CBS2vS2C
S2
B

v!

2
66664

3
77775 (60)

The associated error matrix C is defined in Eq. (61):

C�

I3 03 03 03
03 03 2I3 03
03 03 2I3 03
03 03 03 I3

2
664

3
775 (61)

The state error is corrected using Eq. (62):

x̂� �x	 K�x̂ (62)

A square-root filter is used to update the state estimate and error
covariance or, in this case, the square root of the error covariance
described byMaybeck [12].We canfind the square root of the a priori
error covarianceM by taking the Cholesky decomposition defined in
Eq. (63):

�S�
�����
MC
p

(63)

We can use �S to compute the filter gain K as follows:

�A� �STCT ; �i �
�������������������
�AT �A	 RC

p
; K � �S �A���1i �T��1i (64)

Note that �A is not the same as the linearized dynamics, but a
placeholder value. The variable R is the measurement covariance
matrix. The error covariance matrix is updated by Eq. (65):

Ŝ� �S � �S �A���1i �T ��i 	
����
RC
p
��1 �A (65)

Between updates, the state estimate and the error covariance are
propagated forward in time. The state estimate is propagated in time
using the a posteriori state estimate and control inputs. The updated
covariance P is calculated from the updated square-root covariance

P� ŜT Ŝ.
The linear dynamics found in Eq. (56) are used to propagate the

error covariance matrix. The linear equations given previously are
written in continuous time and must be converted to discrete time for
use in the filter:

�� eA�t; �D �
Z

�t

0

eA��d� (66)

The error covariance is propagated using

M��P�T 	 �DW�TD (67)

where P� ŜŜT andW is the process noise variance.

VI. Residual Generators for Star Tracker
and Gyro Faults

Stochastic fault detection filters such as those defined in Eqs. (7)
and (8) are chosen as a means of generating test residuals for
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detecting star tracker and gyro faults. Because the star tracker
measures essentially inertial attitude and because the gyro measures
inertial angular velocity, a decoupled reduced-order filter can be
generated to detect faults in the system. The filter structure is similar
to ACS attitude estimation schemes using linearized extended
Kalman filter structures, although the present case is modified for
fault detection. The gyros are used as inputs to the dynamic system
and the star trackers are used to correct the attitude state. A filter
structure consisting only of the attitude and gyro bias error is
constructed with dynamics defined in Eq. (68) and measurement
defined in Eq. (69) with measurement sensitivity matrix C�1�
� 2I 0 �. The measurement residual ~r�1 assumes that only star
tracker 1 is used of the two available. The system described is
susceptible to faults in the gyros �! or the first star tracker ��1
through fault directions F! and E�1, respectively. The gyro fault
model is described byF! � � 0 I �T for three-dimensional fault�!,
one fault for each axis of the gyro. This choice of the fault signal
requires that n� 1 to generate the annihilator H! using the formu-
lation in Eq. (10). Note that the inverse required to calculate the
annihilator always exists.

Similarly, the star tracker fault model is described simply by the
known constant rotation matrix E�1 � CBS1 for three-dimensional
fault ��1, one fault for each rotation axis:

� _q
� _!

� �
� �� �!BIB�� 1

2
I

0 0

� �
�q
�!

� �
	 0

I

� �
�! 	 F!�! (68)

~r �1 � C�1 �q
�!

� �
	 CBS1vS1CS1B 	 E�1��1 (69)

As discussed by Chung and Speyer [6], a measurement fault can be
converted to a fault in the dynamics system such that the fault signal
��1 and its derivative appears to enter through the dynamics. A
measurement fault in a single instrument is represented as a fault in
the dynamic that has two dimensions. The star tracker fault model
F�1 is constructed from the fault model E�1 in the measurement
model by first defining f�1 using E�1 � C�1f�1. Then F�1 is con-
structed and the result is shown in Eq. (70) to generate a two-
dimensional fault ���1, shown in Eq. (71). The choice of f�1 is
somewhat arbitrary and left to the designer. One choice is f�1�
� 0:5I 0 �T . However, Eq. (70) does not have full column rank and a
deficiency exists. Further, the gyro fault output through the residual
has the same signature as the star tracker fault, because C�1A�f!�
C�1f�1, where A�1 is the dynamics matrix of Eq. (68):

F�1 � �A�1f�1 f�1 � (70)

�� �1 � ��1
_��1

� �
(71)

The problem is essentially that the dynamics and measurement
model of Eqs. (68) and (69) do not have unique fault signatures. One
alternative would be to use the navigation filter defined in Eqs. (54–
61) as a fault filter. This method would still require the conversion of
the star tracker sensor fault to a plant fault. Two problems arise with
this approach. First, the new fault model F�1 would corrupt the
velocity estimates through the thruster dynamics. Tomaintain output
separability relative to the gyromeasurements, the positionmeasure-
ments must be included as part of the residual process. Because the
DSN measurement updates are only available at very low intervals
(on the order of one update every few hours), the ability to detect a
fault in a reasonable time frame is very limited. Further, the unique
direction of the fault would only be visible if the vehicle was
maneuvering or rotating. Otherwise, � �!BIB�� � 0 and the dynamics of
Eq. (68) are reduced to simple integration. A fault in the star tracker is
indistinguishable from a fault in the gyros. Similarly, the dynamics of
Eq. (56) only generate a unique fault signature if the vehicle is
thrusting. If all thrusters are set to zero output, then the star tracker
fault model will not propagate through the velocity measurements
and the same problem exists as with this reduced-order filter

presented in this section. The result is that under conditions with no
motion, a fault in the star tracker or gyros may be detected but cannot
be uniquely identified.

In this case, hardware redundancy is proposed as the solution.
Because deep space applications require attitude determination
capability, two star trackers are suggested. The loss of one will not
result in the loss of mission capability. A parity relationship is
devised between the two star trackers. As shown in Eq. (45), the
residual for the star tracker takes the form in Eq. (72):

�~r�1�� � C �B
I
~CIS1C

S1
B � I � C�

�q
�!

� �
	 CBS1vS1CS1B 	 E�1��1

�~r�2�� � C �B
I
~CIS2C

S2
B � I � C�

�q
�!

� �
	 CBS2vS2CS2B 	 E�2��2 (72)

The parity residual is described in Eq. (73), which is susceptible to
both faults��1 and��2. Testing this residual will detect a fault in one
star tracker:

� ~r�12�� � �~r�1�� � � ~r�2�� � ~CIS1C
S1
B � ~CIS2C

S2
B 
 CBS1vS1CS1B

	 E�1��1 � CBS2vS2CS2B � E�2��2 (73)

Then two fault detection filters are constructed using the dynamics
defined in Eqs. (68) and (69). The first uses only measurements from
the first star tracker and the second uses measurements from the
second star tracker. At each time step with new gyro measurements,
the state for eachfilter is propagated usingEq. (33).When star tracker
measurements are made available, the fault detection filter structure,
which assumes only gyro faults, is calculated using the dynamics and
measurement models in Eqs. (68) and (69) using the methods
described in Eqs. (7) and (8).

The test residual ~rT� to be combined with the other tests in the next
section is constructed from the residuals of each filter and the parity
relationship, as shown in Eq. (74). The associated covariance is
defined in Eq. (75), where M�1 is the covariance of the first fault
detection filter, M�2 is the covariance of the second filter, and
V1 � CBS1E�vS1vTS1�CS1B andV2 � CBS2E�vS2vTS2�CS2B . Several simplify-
ing assumptions are made in Eq. (75) dealing with the correlation of
the gyro measurements between the two fault detection filters for
convenience. It is assumed that the noise in each star tracker is
independent of the other:

~r T� �
~r�1
~r�2
~r�12

" #
(74)

�T� �
C�M�1C

T
� 	 V1 0 V1

0 C�M�2C
T
� 	 V2 �V2

V1 �V2 V2 	 V1

2
4

3
5 (75)

The test residuals are calculated after each update and tested in the
MHSSPRT to be described in a later section.

VII. Fault Detection Using Three
Accelerometer Triads

At this point, methods for detecting faults in the star tracker and
rate gyros have been defined. Fault detection filters could be
developed for a fault in each of the thrusters and momentum wheel
using the dynamics of the navigation filter described, in which one
filter is created for each thruster fault or momentum wheel fault. An
alternative scheme with lower computational power is developed in
this section. Computational power is exchanged for additional hard-
ware in the form of low-cost accelerometers precisely positioned on
the vehicle. The result is a memoryless residual generator that detects
faults in all of the accelerometer measurements, all of the thrusters,
and all of the momentum wheels. The simplified filter structure and
processing requirements may offset the cost of additional instru-
ments, especially because the instruments are merely low-cost
accelerometers.
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Figure 3 shows a general orientation of the accelerometers. The
selection of orientation is not arbitrary, as will be discussed, but this
orientation is not necessarily optimal. Each of the accelerometers is
placed such that it will experience accelerations and moments
generated by the thrusters and momentum wheels in a different
manner. The lever arms are placed along the principle vehicle axes.
Each lever arm is assumed to be 0.5 m long, half the length of the
thruster lever arms. Three sensors are chosen as the minimum
number allowable that is completely redundant, meaning that even
faults in the accelerometers can be isolated by the fault detection
techniques presented.

The acceleration experienced at a sensor triad located at a fixed
distance from the center of gravity (CG) is given by Eq. (76), which
assumes a rigid body:

AS11 � CS1B ��ABCG 	 ��!BIB���!BIB�� 	 � _!BIBCG
���LBCG to 1�� (76)

The acceleration at sensor 1 in the sensor frame is defined byAS11 . The
known rotation from the body frame to the sensor frame is given by
CS1B and accounts for a known installation relative to the body frame.
The lever arm from theCG to the sensor is referred to asLBCG to 1 and is
defined in the body frame. The linear acceleration at the CG is given
byABCG, and the angular acceleration at the CG is given by _!BIBCG

. The

angular velocity is constant across the rigid body and is described by
!BIB. From this equation, it is clear that the resulting acceleration is a
function of the centripetal acceleration and angular acceleration
operating through the lever arm.

The acceleration at the sensor may be predicted using a combi-
nation of existing sensors and knowledge of the thrust and momen-
tum wheel commands. An estimate of the acceleration at a particular

sensor �AS11 is given by Eq. (77). The measured angular velocity from
the gyros ~!BIB is directly introduced to provide the centripetal
acceleration term. The term wS11 represents the combined noise,
which will be defined later:

�A S1
1 � CS1B � �ABCG 	 �� ~!BIB��� ~!BIB�� 	 � _�!

B
IBCG
���LBCG to 1� 	wS11

(77)

The acceleration at the CG �ABCG is determined by the sum of the
thruster inputs uBTi, as shown in Eq. (78):

�A B
CG �

1

m

XN
i�1

BTi �u
B
Ti (78)

The input moment estimates _�!BIBCG
are calculated as the sum of the

thruster and momentum wheel command inputs:

_�! B
IBCG
� I�1B

�XN
i�1

BTri �u
B
Ti 	

XS
j�1

BMj �u
B
Mj

�
(79)

To assess the combined uncertainty in �AS11 , the measurement models
from Eqs. (47–49) are substituted into Eq. (77). A first-order
perturbation technique is taken and noise terms of higher-order than
one are discarded. The result is given in Eq. (80):

wS11 � �S1 	 CS1B
�
1

m

XN
i�1

BTiwTi � �LBCG to 1��I�1B

�
�XN
i�1

BTriwTi 	
XS
j�1

BMjwMj

�
� � ~!BIB���LBCG to 1���!

� �� ~!BIB � LBCG to 1����!
�

(80)

A residual is formed at each accelerometer between the predicted and
measured accelerations. This test residual will be used to identify the
faults. The residual is composed of nine measurements:

~r A �
~AS11 � �AS11
~AS22 � �AS22
~AS33 � �AS33

2
4

3
5� �a1 � wS11

�a2 � wS22
�a3 � wS33

2
4

3
5 (81)

The residual has the following anticipated statistics, assuming that no
fault exists:

E� ~rA� � 0 (82)

E�~rA ~rTA� � RA (83)

The matrix RA is defined as follows with the subsequent definitions
on the covariance of the input noise terms:

RA �
VA1 	WS1 �WS1S2 �WS1S3

�WS1S2 VA2 	WS2 �WS2S3

�WS1S3 �WS2S3 VA3 	WS3

2
4

3
5 (84)

E��a1�Ta1� � VA1; E��a2�Ta2� � VA2; E��a3�Ta3� � VA3
E�wS11 �wS11 �T � �WS1; E�wS22 �wS22 �T � �WS2

E�wS33 �wS33 �T � �WS3; E�wS11 �wS33 �T � �WS1S3

E�wS11 �wS22 �T � �WS1S2; E�wS33 �wS22 �T � �WS3S2 (85)

A. Thruster Fault Model

If a thruster fault occurs, then the following thruster fault model is
assumed:

�u BTi � uBTi 	wTi 	 �Ti (86)

In this case, the unknown fault signal �Ti is introduced into the ith
fault. The unknown fault signal is propagated through the prediction
of the acceleration at the sensor. A fault direction matrix FTi is
defined for how this particular fault in this particular thruster affects
the residual prediction. After substituting the fault model of Eq. (86)
into Eq. (77), the fault model at accelerometer 1 is given in Eq. (87),
in which the lever arm to the accelerometer is cross-multiplied by the
direction and momentum directions. Note that the sign of the fault
direction matrix is relevant because the construction of the mapping
function relative to the unknown fault signal assumes that �Ti may
take on positive or negative values:

FTi1 � CS1B �LBCG to 1��
�
1

m
BTi 	 �IBBB��1�BTri�

�
(87)

The complete fault directionFTi using all three accelerometers is the
combination of each of the fault directions at each sensor, as shown in
Eq. (88):

FTi �
FTi1
FTi2
FTi3

2
4

3
5 (88)

The residual of Eq. (81) is modified to include the fault in this
particular thruster:

CG

Accelerometer #1

B
C G toL 3

B
C G toL 2

B
C G toL 1

Accelerometer #2

Accelerometer #3

Fig. 3 Acceleration lever arms on the principle axes of the vehicle.
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~r�
~AS11 � �AS11
~AS22 � �AS22
~AS33 � �AS33

2
4

3
5� �a1 � wS11

�a2 � wS22
�a3 � wS33

2
4

3
5	 FTi�Ti (89)

A projector HTi can be generated such that HTiFTi � 0 using a
standard annihilator generation process, as defined in Eq. (90). This
annihilator for a single fault exists for the rank 1 fault direction. It is
unique relative to other thruster faults provided that the fault direction
is unique, which is defined by the unique lever arm in Eq. (87):

HTi � FTi � FTi�FTTiFTi��1FTTi (90)

The projected residual will not see a fault in this particular direction
and will be zero-mean with standard deviation defined by the noise
processes:

~rTi �HTi ~r�HTi

0
@ �a1 � wS11

�a2 � wS22
�a3 � wS33

2
64

3
75	 FTi�Ti

1
A

�HTi

�a1 � wS11
�a2 � wS22
�a3 � wS33

2
64

3
75 (91)

No projector is required because all of the fault directions are unique.
Instead of Eq. (91), the full residual ~r will be used and the adaptive
bias will be estimated according to the unique fault direction FTi for
each thruster.

It is noted that only 8 of the 16 thrusters may be tested using this
method. Every thruster in the configuration of Fig. 2 has a partner
thruster that provides force and moment in exactly the opposite
direction. This test cannot distinguish between faults in either
thruster, only in the thruster pair. Once the thruster pair is identified,
the particular fault can be easily identified by simply examining the
sign of the residual error along the direction of the thruster. Table 2
lists the thruster pair combinations for the configuration in Fig. 2.

For an arbitrary configuration of thrusters, the resulting fault
directions can be generated. A rank test determines if sufficient
information exists to isolate the faults. The rank test is described in
Eq. (92), where n is the total number of thrusters and the matrixFT is
tested for row rank:

rank �FT�> n FT � �FT1 FT2 � � � FTn � (92)

If more thrusters are required for implementation, then more
accelerometers at different locations may be required to correctly
identify thruster faults.

B. Momentum Wheel Faults

The present configuration of accelerometers is interesting because
it is possible to simultaneously detect and isolate momentum wheel
faults from thruster faults. For a momentum wheel fault, the fault
model is defined in Eq. (93), where the fault signal �Mj is unknown
and represents a fault in the momentum wheel:

�u BMj � uBMj 	wMj 	 �Mj (93)

Substituting Eq. (93) into Eq. (77), a fault direction matrix FMj may
be constructed that describes how �Mj affects the measurements. In
this case, the fault direction is defined as follows:

FMj1 ���LBCG to 1��I�1B BMj (94)

The full fault matrix is formed by combining the fault matrix from
each accelerometer:

FMj �
FMj1
FMj2
FMj3

2
4

3
5 (95)

As with the thruster module, the effect of the fault model and
direction influences the residual:

~r�
~AS11 � �AS11
~AS22 � �AS22
~AS33 � �AS33

2
4

3
5� �a1 � wS11

�a2 � wS22
�a3 � wS33

2
4

3
5	 FMj�Mj (96)

A projector is constructed to annihilate the effect of this direction on
the residual such that HMjFMj � 0:

HMj � FMj � FMj�FTMjFMj��1FTMj (97)

The projected residual will be immune to the effect of this fault and
remain zero mean:

~rMj �HMj ~r�HMj

0
@ �a1 � wS11

�a2 � wS22
�a3 � wS33

2
64

3
75	 FMj�Mj

1
A

�HMj

�a1 � wS11
�a2 � wS22
�a3 � wS33

2
64

3
75 (98)

The fault direction FMj is stored and will be used to initialize the
adaptive bias scheme.

C. Accelerometer Fault Models

Of course, one of the accelerometer measurementsmay fail. In this
case, a fault in one sensor in one accelerometer triad is hypothesized.
The fault model is described in Eq. (99), where �Ak is a scalar and
represents the unknown fault signal in the accelerometer triad for the
kth accelerometer triad for each axis l� 1, 2, 3 for the x, y, and z
axes:

~a k � ak 	 �k 	 FAkl�Akl (99)

The fault directionFAkl is defined as simply a 3 � 1 vectorwith a 1 on
the axis that has failed. A projector may be constructed to remove the
one residual affected by the fault, although the simplified fault mode
of these accelerometers does not require annihilation. Instead, only
the fault direction FAkl is stored and the adaptive bias scheme will
estimate the probability of a fault, assuming that the fault modelFAkl
is used.

D. Gyro Faults

Gyromeasurements are required as part of this test. In this case, the
fault model is defined as in Eq. (100), where the index l denotes an
index on the particular axis that failed:

~! B
IB � !BIB 	 �! 	 F!l�!l (100)

Substituting Eq. (100) into Eq. (77) to determine the fault matrix
produces a complex result. The total fault directionFA!l is defined in
Eq. (101):

FA!l � � ~!BIB���LBCG to 1�� � �� ~!BIB � LBCG to 1��� (101)

Table 2 Thruster pairings in Fig. 1

Thruster ID Opposing thruster

1 3
2 4
5 7
6 8
9 11
10 12
13 15
14 16
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Note that the fault model includes terms depending on the possibly
faultymeasurement. The existence of this type of faultmode inwhich
the fault direction is time-varying and dependent upon the faulted
measurement is difficult to use. Therefore, this test is not recom-
mended to find gyro faults and instead it is recommended to use the
fault detection filter of Eqs. (68) and (69) designed for gyro faults.
Although gyros are essential to detecting faults in the thrusters,
momentum wheels, and accelerometers, the gyro faults are rapidly
absorbed into the test residual and cannot be detected using these test
residuals. Interestingly, for small gyro faults, the test residuals
generated are largely immune to the fault and no dependence on the
gyro faults need be modeled.

E. Combined Faults and False Alarm

In actual implementation, it is possible to combine all of the
residuals for the accelerometer faults, thruster faults, andmomentum
wheel faults into a single MHSSPRT. This method actually works
better than separating out the tests, simply because the correct fault
mode is in the combined test and is easily predicted.

On the surface, it may seem that this process may not work,
because essentially nine measurements of acceleration are used to
correctly detect and identify up to 8 thruster faults combined with 3
momentum wheel faults and 9 acceleration faults. For each hypo-
thesized fault, the same scalar fault shows up in all 9 sensors through
a very unique direction defined by the lever arms. Only the residual
assuming the hypothesis that completely annihilates this direction
will remain zero mean, enabling easy identification, as shown in the
next section.

VIII. MHSSPRT with Adaptive Bias Estimation

The previous sections have defined the test residuals and asso-
ciated statistics. A total of 37 different faults have been identified: 6
star tracker faults, 3 gyro faults, 16 thruster faults, 9 accelerometer
faults, and 3 momentum wheel faults, although only 8 thrusters are
modeled because the other 8 represent the same force and moment
with opposite sign. The test residual to be used for fault detection is
defined in Eq. (102) using the two fault detection filter residuals ~r�1
and ~r�2, the star tracker parity residual ~r�12, with all three defined in
Eq. (74). The 9 � 1 test residual of three accelerometer measure-
ments ~rA defined inEq. (81). The total test residual size is 18 � 1. The
associated covariance� is defined in Eq. (103). It is assumed that the
state estimates of the fault detection filters are uncorrelated with the
accelerometer residuals that used gyro measurements for conve-
nience and simplicity:

~r T �
~r�1
~r�2
~r�12
~rA

2
64

3
75 (102)

��
C�M�1C

T
� 	 V 0 V1 0

0 C�M�2C
T
� 	 V2 �V2 0

V1 �V2 V2 	 V 0

0 0 0 RA

2
664

3
775 (103)

The mapping function � is defined using the associated fault direc-
tions and test residuals, as shown in Eq. (104), in which submatrices
are defined for each fault signal. The map for the first star tracker is
defined in Eq. (105) and the map for the second star tracker and gyro
are in Eqs. (106) and (107), respectively. Note that the gyro fault
impacts both star tracker fault detection filter residuals, providing a
unique fault matrix:

�� � ��1 ��2 �! �A �th �MW � (104)

��1 �

C�f�1
03�3
CBS1
09�3

2
664

3
775 (105)

��2 �

03�3
C�f�2
CBS2
09�3

2
664

3
775 (106)

�! �

C�f!
C�f!
03�3
09�3

2
664

3
775 (107)

�A �
09�9
I9�9

� �
(108)

�th �
09�1 09�1 � � � 09�1
FT1 FT2 � � � FT8

� �
(109)

�MW �
09�1 09�1 09�1
FM1 FM2 FM3

� �
(110)

The fault map for the accelerometers is simple and given in Eq. (108).
The map for the 8 unique thruster directions is given in Eq. (109).
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Fault Detection 
Filter Algorithms

Thrust Commands

Moment  Wheel
Commands

Measurement Models

True State 

Measurements with Noise

Fig. 4 Simulation block diagram.
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Likewise, the map for the unique momentumwheel faults is given in
Eq. (110).

Processing of the MHSSPRT proceeds as described previously.
For a total of 29 unique faults, a set of 59 hypotheses is generated: 29
for a positive fault for each unique fault, 29 for a negative fault for
each unique fault, and one healthy hypothesis. The positive and
negative baseline (threshold) biases for each hypothesis are calcu-

lated using Eq. (23). A unique bias �bi is hypothesized for each fault
mode. At each time step, all of the residuals are generated. The biases
are updated using Eqs. (24) and (25) and checked against the
threshold on an element-by-element basis. The density function for
each hypothesis is calculated using Eq. (22). The probability of a
fault is then calculated using the standard MHSSPRT update and
propagation methods in Eqs. (16–18). The next section presents
simulation results using the filters and processors developed.

IX. Simulation Results

The methods presented are implemented in simulation and tested.
Figure 4 shows the simulation block diagram. The control law,which
generated only simplemaneuvers for this case, is used to generate the
forces and moments acting on the vehicle, which are then integrated
through the dynamics of the vehicle. The output state is then trans-
formed into the measurements and corrupted by the noise models
presented. The outputs of the instruments are passed to the fault
detection and isolation software block. This block also receives the
commandedmomentumwheel and thruster commands. Tables 3 and
4 show the 1-sigmavalues used for the thruster andmomentumwheel
noises, respectively, and Table 5 shows the 1-sigma values used to
generate the initial error covariance for each filter structure.

A. Test Maneuver

A short test is performed to demonstrate the effectiveness of this
filter structure. The thrusters andmomentumwheels specified for the
TPF-type program used 1 mN thrusters to perform station keeping
within satellite clusters. The simulation test includes a short thrust of
thruster 1 of 0.001 N for 2 s. The thrust is turned off for 2 s. Then
thruster 3 is fired with a force of 0.001 N for 2 s, essentially reversing
themotion.After this burst, theX-axismomentumwheel is activated,
providing a positive moment of 1:0e � 3 Nm for 2 s followed by 2 s
of nomomentumwheel commands. A final 2 s command of�1:0e �
3 Nm reverses the system. Note that the system does not achieve
steady state and that an attitude and velocity change has occurred
during the maneuver. All data are simulated using an integration step
size of 100 Hz. All of the estimation algorithms and fault detection
filters operate on measurements processed at 10 Hz. A 12 s simu-
lation is generated. For each fault type described in the next section,
the fault is introduced 2 s into the simulation. Because the accelero-
meter residuals are used to examine thruster, momentum wheel, and
accelerometer faults, only the accelerometer residuals are shown for
that type of fault. Likewise, only the star tracker residuals are shown
when examining the star tracker and gyro faults, even though both are
generated simultaneously. Similarly, only a subset of the MHSSPRT
probabilities generated is displayed for any fault set even though all
of the probabilities were calculated using a single MHSSPRT
algorithm. A detection threshold of 99.9% is required to declare a
fault, and a 99.9% certainty in the probability of a fault is required for
isolation. A probability of 1:0e � 6 per epoch is injected into the
MHSSPRT for each fault, and it is assumed the system starts in the
healthy configuration.

Table 3 Sensor noise parameters (1�)

Sensor Value Unit

DSN 1500 m
Star tracker transverse axis 4 arcsec
Star tracker boresight axis 24 arcsec
Rate gyros 0.15 deg/h
Accelerometers 1:00E � 07 m=s=s

Table 4 Actuator uncertainties (1�)

Actuator Value Unit

Thrusters 1:00E � 06 N
Momentum wheels 1:50E � 05 Nm

Table 5 Initial uncertainty values

State Value Unit

Position 2000 m
Velocity 1 m=s
Attitude 1 deg
Angular rate 0.01 deg =s
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Fig. 5 Accelerometer residuals and MHSSPRT probabilities for a fault in thruster 1.
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B. Thruster Faults

A 0.05 mN thruster fault is introduced at the 2 s mark into
thruster 1. Essentially, thrust is commanded, but the vehicle does not
respond. Figure 5 shows the 9 accelerometer test residuals as well as
the MHSSPRT probabilities of a thruster fault for 8 of the thrusters.
The fault jump is clearly seen in the residuals. The fault is detected in
1.1 s and identified in 2.0 s after the fault is injected. This fault size
would have injected a 0.05mNmeter torque on the vehicle assuming
a 1.0m lever arm.Note that initially, the probability that a fault occurs
in thruster 9 is indicated as well as thruster 1, but that the MHSSPRT
detects and isolates correctly over time.

C. Momentum Wheel Faults

Using the same simulation, a momentum wheel fault of 7:5e �
4 Nm is introduced in the x axis momentum wheel at 2 s into the

simulation.Again, themomentumwheel is commanded, but does not
physically respond, indicating a fault. Figure 6 shows the residual
from the three triaxial accelerometers and the resulting MHSSPRT
output examining the momentum wheel faults. The step in the
momentum wheel is barely observable in the third accelerometer in
the z axis and in the second accelerometer y axis. The fault is detected
in 1.2 s and isolated to the x-axis momentum wheel in 2.5 s after the
fault is injected.

D. Accelerometer Faults

Finally, a 5-sigma accelerometer bias is introduced into theX axis
of accelerometer 1. This size of the fault is 5 times greater than the
standard deviation of noise used on the accelerometers. Figure 7
displays the MHSSPRT probability results. This plot shows that
detection of the fault takes 1.0 s or 10 epochs to declare a fault and
1.2 s or 12 epochs to isolate.
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Fig. 6 Accelerometer residuals and MHSSPRT probabilities for a fault in the X- axis momentum wheel.
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Fig. 7 Accelerometer residuals and MHSSPRT probabilities for a fault in the X-axis accelerometer 1.
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E. Gyro Faults

The fault detection filters described were implemented in software
and tested using the same scenario. A gyro fault consisting of a 5-
sigma step function relative to the gyro measurement noise is
introduced after 2 s. The fault enters through the x-axis gyro. Figure 8
shows the residuals from the two star tracker residuals as well as the
star tracker parity test. The first star tracker residual tests only uses
star tracker 1, with the gyros using the fault detection filter structure
defined in Sec. VI. Two points are readily apparent. First, the gyro
fault appears in the residual of both star tracker residuals as expected,
but not in the star tracker parity test. Second, the noise level is
different in the different residuals, due to the fact that one star tracker
is orientated with a 90 deg offset from the other. The MHSSPRT
probabilities detect the fault in 1.7 s and isolate the correct gyro fault
2.0 s after the fault is injected.

F. Star Tracker Faults

A fault in the x axis of star tracker 1 is introduced at 2 s. The x axis
represents the boresight axis of this star tracker, which has the least
accuracy.A 5-sigma fault bias is introduced. Note that the second star
tracker is orientated such that it has a 90 deg offset and the two star
trackers do not have a common boresight. Figure 9 shows the
processed residuals and the associated probabilities. The residual
shows the fault in both the star tracker 1 residual and the parity
relationship. Over time, the fault is absorbed into the star tracker 1
filter. TheMHSSPRT reflects this fact, because it initially detects and
isolates the fault to the correct sensor and axis even though the fault
signal is transient. Over time, the fault detection filter can no longer
be used to detect the star tracker bias and distinguish which star
tracker has failed. The filter structure detects the fault in 1.1 s and
isolates at 1.9 s after the fault is injected. The fault signal lasts 2.8 s
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Fig. 8 Star tracker (ST) residuals and MHSSPRT probabilities for a fault in the X axis of the gyro.
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Fig. 9 Star tracker residuals and MHSSPRT probabilities for a fault in the X axis of star tracker 1.
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before dissipating, which would be sufficient to correctly identify
and generate an appropriate response.

X. Conclusions

A new method for fault detection of the attitude control system is
presented. The system has shown the ability to detect faults in
command of thrust and momentum rapidly and accurately, as well as
faults in the star tracker, gyros, and additional accelerometers. The
problem of fault detection is shown to decouple into two nearly
independent problems. In the first, a set of fault detection filters is
constructed to detect and isolate star tracker and gyro faults. The
second system uses a set of accelerometers to detect momentum
wheel, thruster, and accelerometer faults. Because the second system
is dependent on rate gyro measurements, but unable to detect gyro
faults, the fault detection method must be used to eliminate the
possibility of gyro faults before the parity tests may be used. Using
the method of combining a fault mapping along with the adaptive
estimation of the fault signal enables a singleMHSSPRT test to act as
the decision-maker for the fault detection system. The MHSSPRT
assumes that only one fault occurs at a time and detects the appro-
priate fault, given the fault map and adaptive estimation scheme.

The method presented here moves fault detection technology
closer to an online, reconfigurable fault detection scheme based on
stochastic uncertainty. Each sensor fault is explicitly mapped to an
available residual through the mapping function. Because no assum-
ptions on the fault signal are made, the mapping function is generic
and shows how each fault affects all of the available residuals. If a
sensor has a fault and it is detected, it may be removed and replaced
by a different sensor of similar or possibly lesser quality. The resul-
ting mapping function could be updated and the associated adaptive
scheme could be restarted with new bias estimates and assumed
uncertainties based on the assumed healthy performance of the
sensor fusion processes using the new sensor. In this way, reconfigu-
ration may be automated based on the latest calibrated information
and continue to provide fault detection information on the remaining
sensors.
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